Corrigendum: Protruding knob-like proteins violate local symmetries in an icosahedral marine virus
نویسندگان
چکیده
Marine viruses play crucial roles in shaping the dynamics of oceanic microbial communities and in the carbon cycle on Earth. Here we report a 4.7-Å structure of a cyanobacterial virus, Syn5, by electron cryo-microscopy and modelling. A Cα backbone trace of the major capsid protein (gp39) reveals a classic phage protein fold. In addition, two knob-like proteins protruding from the capsid surface are also observed. Using bioinformatics and structure analysis tools, these proteins are identified to correspond to gp55 and gp58 (each with two copies per asymmetric unit). The non 1:1 stoichiometric distribution of gp55/58 to gp39 breaks all expected local symmetries and leads to non-quasi-equivalence of the capsid subunits, suggesting a role in capsid stabilization. Such a structural arrangement has not yet been observed in any known virus structures.
منابع مشابه
Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles
Spherical viruses are remarkably well characterized by the Triangulation (T) number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the p...
متن کاملThe marine algal virus PpV01 has an icosahedral capsid with T=219 quasisymmetry.
Phaeocystis pouchetii virus (PpV01) infects and lyses the haptophyte Phaeocystis pouchetii (Hariot) Lagerheim and was first isolated from Norwegian coastal waters. We have used electron cryomicroscopy and three-dimensional image reconstruction methods to examine the native morphology of PpV01 at a resolution of 3 nm. The icosahedral capsid of PpV01 has a maximum diameter of 220 nm and is compos...
متن کاملGeneration of filamentous instead of icosahedral particles by repression of African swine fever virus structural protein pB438L.
The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus m...
متن کاملGenome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a "horned" bacteriophage of marine synechococcus.
Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and an...
متن کاملSequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.
Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and ...
متن کامل